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Abstract—This paper studies the generalization and normalization issues of information-theoretic distance measures for clustering

validation. Along this line, we first introduce a uniform representation of distance measures, defined as quasi-distance, which is

induced based on a general form of conditional entropy. The quasi-distance possesses three properties: symmetry, the triangle law,

and the minimum reachable. These properties ensure that the quasi-distance naturally lends itself as the external measure for

clustering validation. In addition, we observe that the ranges of the distance measures are different when they apply for clustering

validation on different data sets. Therefore, when comparing the performances of clustering algorithms on different data sets, distance

normalization is required to equalize ranges of the distance measures. A critical challenge for distance normalization is to obtain the

ranges of a distance measure when a data set is provided. To that end, we theoretically analyze the computation of the maximum

value of a distance measure for a data set. Finally, we compare the performances of the partition clustering algorithm K-means on

various real-world data sets. The experiments show that the normalized distance measures have better performance than the original

distance measures when comparing clusterings of different data sets. Also, the normalized Shannon distance has the best

performance among four distance measures under study.

Index Terms—Clustering validation, entropy, information-theoretic distance measures, K-means clustering.

Ç

1 INTRODUCTION

CLUSTERING analysis [9] provides insight into the data by
partitioning the objects into groups (clusters) of objects,

such that objects in a cluster are more similar to each other
than to objects in other clusters. A longstanding challenge of
clustering research is about how to validate clustering
results [2], [3], [5], [7], [8], [11], [12], [14], [15]. A promising
direction is the use of information-theoretic distance
measures, such as Shannon Entropy [22] and Goodman-
Kruskal coefficient [24], [10], as external criteria for cluster-
ing validation. In other words, these information-theoretic

distance measures are used to compare the clustering output
with the “true” partition1 determined by the class label
information. In this case, these external measures are viewed
as the measurement of distances between two partitions of
the data.

However, the lack of understanding of the characteristic
of these information-theoretic distance measures hinders
the use of these measures for clustering validation sub-
stantially. To this end, Meila [19] provided some basic
requirements of information-theoretic distance measures
for clustering validation, such as refinement additivity, join
additivity, and convex additivity. As a further step, in this
paper, we introduce a uniform representation of quasi-
distance, for information-theoretic distance measures. The
quasi-distance possesses three properties: symmetry, the
triangle law, and the minimum reachable. These properties
ensure that a quasi-distance measure naturally lends itself
as the external criteria for clustering validation.

In general, there are two application scenarios of
information-theoretic distance measures for clustering
validation. First, these distance measures can be used to
compare clusterings of a given data set by different
clustering algorithms. Second, these measures can also be
used to compare clusterings of different data sets by a
specific clustering algorithm. For instance, in order to find
the characteristic of data (high dimensionality, the size of
the data, the sparseness of the data, and scales of
attributes) that may strongly affect the performance of a
clustering algorithm [25], multiple data sets with different
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1. We will use the terms partition and clustering of a data set
interchangeably in this paper.
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characteristics are required to be clustered, and their
results are then analyzed.

For the above second scenario, we have observed that the
ranges of distance measures are different for different data
sets. In other words, to do a fair comparison, distance
normalization is required to equalize ranges of the distance
measures. A critical challenge for distance normalization is
to obtain the ranges of a distance measure. To that end, we
theoretically analyze the computation of the maximum
value of a distance measure for a data set. Our study reveals
that the exact computation of the maximum value of a
distance measure is usually difficult to find. As a result, we
provide an approximate computation form of the maximum
values for these distance measures. We also show that there
are some cases in which the maximum distance value can
be obtained. Finally, we have designed various experiments
by exploiting the K-means clustering algorithm to show that
1) the normalized distance measures outperform the
original distance measure and 2) the normalized Shannon
distance has the best performance among four observed
distance measures.

Overview. The remainder of this paper is organized as
follows: Section 2 describes the basic denotations and
concepts of external clustering validation measures and
quasi-distance. In Section 3, we briefly describe our
previous works on partition entropy and conditional
entropy, which are the bases of the quasi-distances. Section 4
details the uniform framework of quasi-distances between
two partitions and presents some examples to show how
the proposed framework induces several well-known
distances for clustering validation. In Section 5, we describe
the importance of the distance normalization when compar-
ing clusterings of different data sets. In Section 6, we
theoretically analyze the computation of the maximum
value of a distance measure for a data set, which is the key
to distance normalization. Section 7 demonstrates the
experimental setup and results. Finally, in Section 8, we
draw conclusions.

2 BASIC CONCEPTS

In this paper, we adopt the notations used in [23] and [18].
The set of reals and the set of natural numbers are denoted
by IR and IN, respectively. All other sets considered in the
following discussion are nonempty and finite. � ¼
fA1; . . . ; Amg is a partition of a set A, iff [mi¼1Ai ¼ A and
Ai \Aj ¼ ; ði 6¼ jÞ. A block of a partition refers to any
element in a partition of a set A. Let PART ðAÞ be the set of
partitions of set A. The class of all partitions of finite sets is
denoted by PART . If �, �0 2 PART ðAÞ, then � � �0 if every
block of � is included in a block of �0. If A, B are two disjoint
sets, � 2 PART ðAÞ, � 2 PART ðBÞ, where � ¼ fA1; . . . ; Amg,
� ¼ fB1; . . . ; Bng, then the partition ð�þ �Þ 2 PART ðA [BÞ
is given by

�þ � ¼ fA1; . . . ; Am;B1; . . . ; Bng:

Let � 2 PART ðAÞ and let C � A. The “trace” of � on C is
given by �C ¼ fAi \ CjAi 2 � such that Ai \ C 6¼ ;g. Ob-
viously, �C 2 PART ðCÞ. When D � A, it is clear that
ð�CÞD ¼ �ðC^DÞ.

Let �, � 2 PART ðAÞ (two partitions defined on the same
set A), where � ¼ fA1; . . . ; Amg, � ¼ fB1; . . . ; Bng. The

partition � ^ � whose blocks consist of the nonempty
intersections of the blocks of � and � can be written as

� ^ � ¼ �B1
þ � � � þ �Bn

¼ �A1
þ � � � þ �Am

:

External measures. When the external information (the
class labels of all the objects) is provided, the external
measure for clustering validation is actually the distance
between two partitions of the data set: one is the partition
resulted from a clustering algorithm, the other is the “true”
partition generated by the class labels. Thus, given a set A,
the external measure for clustering validation is a mapping

d : PART ðAÞ2 ! IR: ð1Þ

dð�; �Þ is used to measure the distance from � to �. The first
argument refers to the output partition � ¼ fA1; . . . ; Amg of
A. The second argument refers to the “true” partition � ¼
fB1; . . . ; Bng of A, where Bi contains all the objects with
class label i (for i ¼ 1; . . . ; n). The smaller dð�; �Þ is, the
better the clustering result � is.

Quasi-distance. Various information-theoretic distance
measures, such as Shannon Distance [17], Goodman-
Kruskal coefficient [24], [10], the Van Dongen criterion
[19], and the Mirkin metric [19], can be used as external
measures for clustering validation. Meila [19] provided
some basic requirements of external measures for clustering
validation, such as refinement additivity, join additivity, and
convex additivity. However, in this paper, we show that all
these information-theoretic distance measures are actually
quasi-distance between two partitions when they are used
as external measures for clustering validation. A quasi-
distance is defined as follows:

Definition 1. Let �, � be two partitions on A. The measure
dð�; �Þ is a quasi-distance between these two partitions; that is,
for any partitions �, �, and � on A, it satisfies

1. dð�; �Þ reaches its minimum over both � and � iff
� ¼ � (minimum reachable),

2. dð�; �Þ ¼ dð�; �Þ (symmetry), and
3. dð�; �Þ þ dð�; �Þ � dð�; �Þ (the triangle law).

Note that dð�; �Þ is minimum reachable. In other words,
even if two partitions are the same, dð�; �Þ can reach a
minimum value, but this minimum distance value may not
be zero. For example, as you will see in Section 4, this
situation happens for the distance d1

pal in Table 1. This is the
reason why we define it as quasi-distance.

3 THE CONCEPTS OF PARTITION ENTROPY AND

CONDITIONAL ENTROPY

In this section, we briefly describe our previous work on
partition entropy and conditional entropy [16], which is the
basis of the results in Section 4.

3.1 Partition Entropy and Conditional Entropy

Partition entropy is a mapping

H : PART ! IR; ð2Þ

satisfying some additional conditions as described in
Section 3.4. A formal definition of partition entropy is also
given in Section 3.4.
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Given a set A, conditional entropy is a mapping

C : PART ðAÞ2 ! IR: ð3Þ

The first argument refers to a condition partition, while the
second one refers to a decision partition. If �, � are two
partitions of A, Cð�; �Þ measures the degree of difficulty in
predicting � by �. Based on an existing partition entropy,
we give two definitions of conditional entropy as follows:

Definition 2. Let �, � 2 PART ðAÞ, � ¼ fA1; . . . ; Amg,
� ¼ fB1; . . . ; Bng. A conditional entropy C1 is a function C
in (3) such that

C1ð�; �Þ ¼
Xm
i¼1

jAij
jAj � Hð�Ai

Þ; ð4Þ

where �Ai
is the “trace” of � on Ai.

Definition 2 states that the conditional entropy C1 is the
expected value of the entropies calculated according to
conditional distributions, i.e., C1ð�; �Þ ¼ EAi

ðHð�Ai
ÞÞ,Ai 2 �.

Definition 3. Let �, � 2 PART ðAÞ, � ¼ fA1; . . . ; Amg,
� ¼ fB1; . . . ; Bng. A conditional entropy C2 is a function C
in (3) such that

C2ð�; �Þ ¼ Hð� ^ �Þ � Hð�Þ: ð5Þ

Definition 3 states that the conditional entropy C2 is the
difference between two entropies. The equality C1ð�; �Þ ¼
C2ð�; �Þ yields the Shannon entropy [1]. Thus, this axioma-
tization of the Shannon entropy shows the rationality of
these two definitions.

3.2 Equality Properties of Partition Entropy

If�¼fA1; . . . ; Ang is a partition of a setA, then the probability
distribution vector attached to � is P ð�Þ ¼ ðp1; . . . ; pnÞ, where
pi ¼ jAij

jAj for 1 � i � n. Thus, it is straightforward to consider
the notion of partition entropy via the entropy of the
corresponding probability distribution. We define the
measure function of H as a mappingM : �! IR such that
Hð�Þ ¼ MðP ð�ÞÞ for every � 2 PART , where � ¼ fP ð�Þj�2
PARTg. The blocks in a partition � are unordered while the
elements in P ð�Þ are ordered. Thus, the inherent postulate of
M is that it is symmetric in the sense that

M P ð�Þð Þ ¼ M P 0ð�Þð Þ; ð6Þ

where P 0ð�Þ is any permutation of P ð�Þ.
The other equality postulate of M is expansibility in the

sense that for every ~p 2 �m

Mð~pÞ ¼ Mð~p0Þ; ð7Þ

w h e r e ~p ¼ ðp1; . . . ; pmÞ, ~p0 ¼ ðp1; . . . ; pm; 0Þ a n d �m ¼
fðp1; . . . ; pmÞ : 0 � pi � 1 for i ¼ 1; . . . ;m; p1 þ � � � þ pm ¼ 1g.

3.3 Inequality Postulates of Partition Entropy

We give the inequalities that partition entropy and its

corresponding conditional counterpart must satisfy as

follows:

Postulate 1. Let �, �0 2 PART ðAÞ and � � �0, then

Hð�0Þ � Hð�Þ;

where � is the majorization relationship (entropically

comparable relationship) between two partitions, detailed

in [18] and [16].

Postulate 2. Let �, �0, � 2 PART ðAÞ and � � �0, then

Cð�; �Þ � Cð�0; �Þ:

Postulate 3. Let �, �, �0 2 PART ðAÞ and � � �0, then

Cð�; �0Þ � Cð�; �Þ:

A function H, which satisfies Postulate 1, is actually a

Schur-concave function [18]. Postulates 2 and 3 state that

conditional entropy C should be monotonic in the first

argument and dually monotonic in the second argument.

Specifically, Postulate 2 shows that finer condition partition

leaves less uncertainty about decision partition and thus

owns more ability in predicting decision partition. On the

other hand, Postulate 3 shows that coarser decision

partition relaxes the requirement of precision for predicting

and thus contains less uncertainty also. They are the two

postulates conditional entropy holds inherently.

3.4 Formal Definition of Partition Entropy and Its
Checking Conditions

Definition 4. When a function defined by (2) satisfies Postulates 1

through 3, and its corresponding measure function M is

symmetric and expansible, this function is partition entropy.

Considering the two definitions of conditional entropy

separately, Luo et al. [16] reduce the redundancies in

Postulates 1 through 3, and give the easy-checking condi-

tions for any partition entropy. The main results are

summarized as the following Theorems 1 and 2.

Theorem 1. When conditional entropy is defined as C1, the

measure functionM of H is symmetric and expansible, if and

only H is concave, it is a partition entropy.
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Theorem 2. Given a function f : ½0; 1� ! IR, fð0Þ ¼ 0, f is
continuous on [0, 1], f 000 exists in (0,1), f 00ðxÞ � 0 and
f 000ðxÞ � 0 for any x 2 ð0; 1Þ. Let � ¼ fA1; A2; . . . ; Amg.
Then, Hð�Þ ¼

Pm
i¼1 fð

jAij
A Þ is a partition entropy when its

conditional counterpart is defined as C2.

4 FROM CONDITIONAL ENTROPY TO

QUASI-DISTANCE BETWEEN TWO PARTITIONS

In this section, we introduce some properties, which can be
used to induce the quasi-distance based on the generic
form C of conditional entropy.

Let �, � be two partitions on a data set A, and C be a
conditional entropy, we consider the following distance
between � and �:

dð�; �Þ ¼ Cð�; �Þ þ Cð�; �Þ; ð8Þ

where � is considered as the “true” partition, Cð�; �Þ is the
measure of the purity in �, and Cð�; �Þ is a penalty to the
situation that a data cluster in the “true” partition � is
separated into several clusters in �.

The following properties give the conditions, which
guarantee that dð�; �Þ ¼ Cð�; �Þ þ Cð�; �Þ is a quasi-distance.
To show this, we consider the two situations where the
conditional entropy C is defined as C1 and C2, respectively.

Lemma 1. Let �, � be any two partitions on A. Then,
dð�; �Þ ¼ Cð�; �Þ þ Cð�; �Þ reaches its minimum if and only
if � ¼ �, where C is the conditional counterpart of a
partition entropy H, defined as C1 or C2.

Proof. We prove this lemma under the situations that the
conditional entropy is defined as C1 and C2, respectively.

When C is defined as C1, C1ð�; �Þ and C1ð�; �Þ reach
their minimal values when � ¼ �. Thus, d1ð�; �Þ reaches
its minimal value 2Mð0; 1Þ when � ¼ �, where M is the
measure function of the corresponding entropy.

When C is defined as C2, d2ð�; �Þ ¼ 2Hð� ^ �Þ �
Hð�Þ � Hð�Þ. It is clear that Hð� ^ �Þ � Hð�Þ and
Hð� ^ �Þ � Hð�Þ. Thus, d2 reaches its minimal value 0
when � ¼ �. tu

Lemma 2. Let �, �, � be three partitions on A. If Cð� ^ �; �Þ þ
Cð�; �Þ � Cð�; � ^ �Þ, then dð�; �Þ ¼ Cð�; �Þ þ Cð�; �Þ is a
quasi-distance, where C (defined as C1 or C2) is the
corresponding conditional entropy of a partition entropy H.

Proof. By Lemma 1, dð�; �Þ satisfies the condition 1 of a
quasi-distance. The symmetry of dð�; �Þ is immediate to
see. Next, we prove the triangular property of dð�; �Þ:

Cð�; �Þ þ Cð�; �Þ � Cð� ^ �; �Þ þ Cð�; �Þ ð9Þ

� Cð�; � ^ �Þ ð10Þ

� Cð�; �Þ; ð11Þ

where (9) follows from Postulate 2, (10) follows from
the condition in this lemma, and (11) follows from
Postulate 3.

In a similar manner, we prove that

Cð�; �Þ þ Cð�; �Þ � Cð� ^ �; �Þ þ Cð�; �Þ ð12Þ

� Cð�; � ^ �Þ � Cð�; �Þ: ð13Þ

Then, adding inequalities (11) and (13) together,
we have dð�; �Þ þ dð�; �Þ � dð�; �Þ. So, dð�; �Þ is a
quasi-distance. tu

Note that Lemmas 1 and 2 remain true no matter C is

defined as C1 or C2.

4.1 When Conditional Entropy Is Defined as C1

Theorem 3. Let �, � be two partitions on a data set A, and the

conditional entropy is defined as C1 based on a partition

entropy H. If Hð� ^ �Þ � C1ð�; �Þ þ Hð�Þ, then d1ð�; �Þ ¼
C1ð�; �Þ þ C1ð�; �Þ is a quasi-distance.

Proof. Let �¼fB1; . . . ;Blg, �¼fC1; . . . ;Cmg, �¼fD1; . . . ;Dng.
First, we prove that C1ð� ^ �; �Þ ¼

Pn
i¼1
jDij
jAj C

1ð�Di
; �Di
Þ:

Xn
i¼1

jDij
jAj C

1ð�Di
; �Di
Þ ¼

Xn
i¼1

jDij
jAj

Xl
j¼1

jBj ^Dij
jDij

H ð�Di
ÞBj

� � !
ð14Þ

¼
Xn
i¼1

Xl
j¼1

jBj ^Dij
jAj H �ðDi^BjÞ

� �
ð15Þ

¼ C1ð� ^ �; �Þ; ð16Þ

where (14) follows from the definition of C1 (Definition 2),

(15) follows from ð�Di
ÞBj
¼ �ðDi^BjÞ (refer to Section 2 for

the definition of the “trace” of a partition), and (16) also

follows from Definition 2. Then,

C1ð� ^ �; �Þ þ C1ð�; �Þ¼
Xn
i¼1

jDij
jAj C

1ð�Di
; �Di
Þ þ

Xn
i¼1

jDij
jAj Hð�Di

Þ

ð17Þ

¼
Xn
i¼1

jDij
jAj C

1ð�Di
; �Di
Þ þ Hð�Di

Þ
� �

ð18Þ

�
Xn
i¼1

jDij
jAj Hð�Di

^ �Di
Þ ð19Þ

¼
Xn
i¼1

jDij
jAj H ð� ^ �ÞDi

� �
¼ C1ð�; � ^ �Þ; ð20Þ

where (17) follows from (16), (19) follows from the

condition in this theorem, and (20) follows from

�Di
^ �Di

¼ ð� ^ �ÞDi
.

Finally, by Lemma 2, this theorem follows. tu
Corollary 1. Let �, � be any two partitions on A,

g : ½0; 1� ! IR, Mðpi; . . . ; pmÞ ¼
Pm

i¼1 pigðpiÞ be the mea-

sure function of a partition entropy H. If gðxÞ þ gðyÞ �
gðxyÞ for 0 � x � 1 and 0 � y � 1, then d1ð�; �Þ ¼
C1ð�; �Þ þ C1ð�; �Þ is a quasi-distance.
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Proof. Let � ¼ fB1; . . . ; Blg, � ¼ fC1; . . . ; Cmg. Then,

C1ð�; �ÞþHð�Þ ¼
Xl
i¼1

Xm
j¼1

jBi \ Cjj
jAj g

jBi \ Cjj
jBij

� �
þ g jBij

jAj

� �� �
;

Hð� ^ �Þ ¼
Xl
i¼1

Xm
j¼1

jBi \ Cjj
jAj g

jBi \ Cjj
jAj

� �
:

If gðxÞ þ gðyÞ � gðxyÞ for 0 � x � 1 and 0 � y � 1, then

g
jBi \ Cjj
jBij

� �
þ g jBij

jAj

� �
� g jBi \ Cjj

jAj

� �
for i ¼ 1; . . . ; l and j ¼ 1; . . . ;m. Then,

C1ð�; �Þ þ Hð�Þ � Hð� ^ �Þ:

From the above and by Theorem 3, this corollary
is true.

4.2 When Conditional Entropy Is Defined as C2

Theorem 4. Let �, � be two partitions on A, and conditional
entropy is defined as C2 based on a partition entropy H.
Then, d2ð�; �Þ ¼ C2ð�; �Þ þ C2ð�; �Þ is a quasi-distance.

Proof.

C2ð� ^ �; �Þ þ C2ð�; �Þ
¼ Hð� ^ � ^ �Þ � Hð� ^ �Þ þ Hð� ^ �Þ � Hð�Þ
¼ Hð� ^ � ^ �Þ � Hð�Þ ¼ C2ð�; � ^ �Þ:

From the above and by Lemma 2, this theorem holds. tu

4.3 Examples of Quasi-Distance

Let �, � be two partitions on a data set A, based on the
above discussion, we have the following two methods to
induce quasi-distances:

1. Let H be a partition entropy, and its conditional
entropy is defined as C1. If H satisfies the conditions
in Theorem 3 or Corollary 1, d1ð�; �Þ ¼ C1ð�; �Þ þ
C1ð�; �Þ is a quasi-distance.

2. Let H be a partition entropy, and its conditional
entropy is defined as C2. Then, d2ð�; �Þ ¼ C2ð�; �Þ þ
C2ð�; �Þ¼2Hð� ^ �Þ�Hð�Þ�Hð�Þ is a quasi-distance.

Here, we first give some examples of partition entropy,
and then induce the corresponding quasi-distances. All
these examples, to be proved by the proposed theorems
and corollaries, are under the following assumption: let
� ¼ fA1; . . . ; Amg and � ¼ fB1; . . . ; Bng be two partitions of
a set A, the probability distribution vector attached to � be
P ð�Þ ¼ ðp1; . . . ; pmÞ, where pi ¼ jAij

jAj for 1 � i � m.
Examples when the conditional entropy is defined as

C1. The examples in Table 1 are partition entropies when
their conditional counterparts are defined as C1 (proved by
Theorem 1). It can be proved by Corollary 1 that d1

sha, d
1
pal,

and d1
gin are quasi-distances. d1

goo is also a quasi-distance,
which can be proved by Theorem 3. The details of these
proofs are omitted. d1

sha is first proposed in [17], and
referred to as variation of information in [19]. Additionally,
Meila [19] gives an axiomatic method of d1

sha, which is
aligned with the lattice of partitions and convexly additive.
d1
goo is actually the n-invariant version of the Van Dongen

criterion [19].
Examples of the conditional entropy is defined as C2.

The examples in Table 2 are all partition entropies when

their conditional counterparts are defined as C2 (proved by

Theorem 2). It can be easily proved by Theorem 4 that d2
sha

(d1
sha and d2

sha are the same distance, expressed in two

ways) and d2
gin are both quasi-distances. d2

gin is actually the

n-invariant version of the Mirkin metric [19].
It should be noted that all the quasi-distances in Tables 1

and 2 except d1
pal are true metrics since the minimal values of

these distances are all 0. However, the minimum of d1
pal is 2.

Thus, it is not a real distance.

5 NORMALIZATION ISSUES

In this section, we discuss normalization issues of distance
measures. Normalization is critical when distance measures
are used to compare clusterings of different data sets.

Different data sets have different data characteristics,
and thus have different degree of difficulty for clustering. In
general, the bigger the degree of difficulty on the clustering
data is, the more possible that a clustering algorithm
generates a result with a bigger distance. Thus, the
clustering result on a specific data set is affected by both
the performance of the clustering algorithm and the degree
of clustering difficulty on the data set itself. When
comparing the performances of a clustering algorithm on
different data sets, since the degrees of difficulty on these
data sets are different, the original quasi-distance might be
biased. For instance, we assume that � ¼ fA1; . . . ; Amg and
� ¼ fB1; . . . ; Bng are “true” partitions for two data sets A
and B, respectively. Also, let �0 and �0 be the clustering
results of data set A and B by a specific clustering
algorithm, respectively. By a distance measure d, their
distances dð�; �0Þ, dð�; �0Þ and the distance ranges are shown
in Fig. 1. As can be seen, the maximum distance dmax�

2 is
much bigger than dmax� , which shows that the degree of
difficulty in clustering B is much greater than that for data
set A. It also shows that dð�; �0Þ > dð�; �0Þ, indicating that
the clustering performance on A is better than that on B.
However, it is clear that �0 is a bad result because dð�; �0Þ
is close to its maximum distance dmax� . Also, �0 is a
good clustering because dð�; �0Þ is close to its minimum
distance dmin� .
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2. The clustering result with the maximal (minimal) distance dmax ðdminÞ
is the worst (best) result on the corresponding data set. The formal
definitions of dmax and dmin are given in (21).

TABLE 2
Examples of Quasi-Distance with Conditional Entropy C2
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Therefore, when comparing the performances of a
clustering algorithm on different data sets, the distance
measure for clustering validation should be irrelevant to the
degree of clustering difficulty on a data set. A possible way
to solve this problem is the use of the normalized distance,
which represents the relative position of the original
distance between the minimal and maximal distance. The
formal definition of distance normalization is given as
follows:

When � is the fixed “true” partition of a data set A and �
is any partition of A, the quasi-distance dð�; �Þ is a function
of �, denoted by d�ð�Þ. Let dmax� and dmin� be the maximal
and minimal values of d�ð�Þ ð� 2 PART ðAÞÞ, respectively,
the normalized form of this distance is denoted by

normd�ð�Þ ¼
d�ð�Þ � dmin�

dmax� � dmin�

: ð21Þ

After normalization, normd�ð�Þ is in [0,1]. In fact,
normd�ð�Þ is the relative position of the original distance
in the distance range ½dmin� ; dmax� �.

6 COMPUTATION OF dmin� AND dmax�

In this section, we focus on the computation of dmin� and
dmax� when the conditional entropy used in the quasi-
distance is C1. Let �, � 2 PART ðAÞ, � ¼ fB1; . . . ; Bng is the
“true” partition, � ¼ fA1; . . . ; Amg. In the following, we
assume that dð�; �Þ ¼ C1ð�; �Þ þ C1ð�; �Þ is a quasi-distance,
where C1 is a conditional entropy, H and M are its
corresponding partition entropy and the measure function,
respectively. According to Theorem 1, when M is sym-
metric and expansible M must be a concave function.

It is easy to compute dmin� . However, the computation
of the exact value of dmax� is rather complicated. Section 6.1
gives the computing methods of dmin� . In Section 6.2, we
give some mathematical facts about the partition entropy
and conditional entropy. Based on these facts, we
formulate a �0 2 PART ðAÞ, for which one might think
that dmax� ¼ dð�0; �Þ. However, we give the example to
show it is not true. In Section 6.3 we give the explicit
expression of dð�0; �Þ. In Section 6.4, we approximate the
value of dmax� in general cases. Finally, Section 6.5 gives
the exact value of dmax� in some special cases.

6.1 The Exact Computation of dmin�

Theorem 5. Let � be the “true” partition of a data set A, � be
a partition of A, H be a partition entropy, and its
conditional entropy be defined as C1, d1ð�; �Þ ¼ C1ð�; �Þ þ
C1ð�; �Þ be a quasi-distance. Then, dmin� ¼ 2Mð0; 1Þ, where
M is the measure function of H.

Proof. d�ð�Þ reaches this minimum when � ¼ �. This

minimal value is actually 2C1ð�; �Þ ¼ 2Mð0; 1Þ. tu

6.2 Analysis on dmax�

Unlike dmin� , the exact value of dmax� is usually difficult to
obtain. Before we describe our analysis on dmax� , we first
present some mathematical facts:

Fact I. Assuming that the measure functionM is concave
and symmetric, then Mðp1; . . . ; pmÞ � Mð 1

m ; . . . ; 1
mÞ, m 2 IN,

for any pi satisfying
Pm

i¼1 pi ¼ 1 and 0 � pi � 1, i ¼ 1; . . . ;m.
Fact II. LetMðp1; . . . ; pmÞ ¼

Pm
i¼1 fðpiÞ, f is a continuous

function on [0, 1] with a nonpositive second derivative (note

that M is concave) in (0, 1), and fð0Þ ¼ 0 (due to

the expansibility of M). Then, we can derive that

Mð 1
m ; . . . ; 1

mÞ � Mð1n ; . . . ; 1
nÞ if m � n. To prove this result,

we define a function gðxÞ ¼ Mð1x ; . . . ; 1
xÞ ¼ xfð1xÞ, x � 1. We

have

g0ðxÞ ¼ fð1
x
Þ �

f 0ð1xÞ
x
¼

fð1xÞ�fð0Þ
1
x

� f 0ð1xÞ
x

:

By Mean-Value Theorem (see [21, p. 86]), there exists a � 2
ð0; 1

xÞ such that g0ðxÞ ¼ f 0ð�Þ�f 0ð1xÞ
x . Using the fact f 00 � 0, we

conclude that g0ðxÞ � 0, and the above claim is proved.
Fact III. C1ð�; �Þ � Hð�Þ, which means that if � represents

a “true” partition, then C1ð�; �Þ takes on its maximal value
Hð�Þ when � is the trivial partition fAg of the data set A.
This claim follows from the concavity of H. The proof is as
follows:

C1ð�; �Þ ¼
Xm
i¼1

jAij
jAj � Hð�Ai

Þ

¼
Xm
i¼1

jAij
jAj � M

jB1

T
Aij

jAij
; . . . ;

jBn

T
Aij

jAij

� �

�M
Xm
i¼1

jAij
jAj
jB1

T
Aij

jAij

� �
; . . . ;

Xm
i¼1

jAij
jAj
jBn

T
Aij

jAij

� � !

¼M jB1j
jAj ; . . . ;

jBnj
jAj

� �
¼ Hð�Þ:

Based on the above facts, one might think that the

following formulation would probably generate a �0 2
PART ðAÞ such that dmax� ¼ d1ð�0; �Þ ¼ C1ð�0; �Þ þ C1ð�; �0Þ.

Suppose � ¼ fB1; . . . ; Bng is the “true” partition. Without

loss of generality, we sort the elements in � such that

jB1j � jB2j � � � � � jBn. Additionally, Bj ¼ faj1; a
j
2; . . . ; ajjBjjg,

1 � j � n, where aji 2 Bj � A. Then, �0 ¼ fA1; . . . ; Amg,
where Ai ¼ faji 2 Bjj jBjj � i; 1 � j � ng ð1 � i � mÞ, and

m ¼ maxfjBjj j1 � j � ng. For the easy understanding of

the computation of the quasi-distance, we show the partition

pair ð�; �Þ by an intersection matrix in which the element in

the ith row and jth column equals jAi \Bjj. �0 is the partition

such that the entry in the intersection matrix is either 0 or 1,

and in each column of this matrix the entries with the values

of 1 always appear above those with the values of 0. The

following is an example intersection matrix of �0 and �. Since

we sort the element in �, in this matrix the entry values of the

rightmost column are all 1, while in the leftmost column only

the entry values of the first two rows are 1:

1254 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 9, SEPTEMBER 2009

Fig. 1. Comparing clusterings of different data sets.

Authorized licensed use limited to: Wayne State University. Downloaded on January 5, 2010 at 15:42 from IEEE Xplore.  Restrictions apply. 



m

1 1 1 1 � � � 1
1 1 1 1 � � � 1
0 1 1 1 � � � 1
0 0 1 1 � � � 1
0 0 0 1 � � � 1
0 0 0 1 � � � 1
..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 � � � 1
0 0 0 0 � � � 1:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

Then, it seems that �0 ¼ fA1; . . . ; Amg 2 PART ðAÞ might

be a reasonable candidate satisfying dmax� ¼ d1ð�0; �Þ. At

first glance, using the above Facts I and II, we observe that

C1ð�; �0Þ takes on its maximal value among all possible

� 2 PART ðAÞ. Also, Fact I appears to suggest that the value

C1ð�0; �Þ is at least not too small. Furthermore, we can prove

the following theorem.

Theorem 6. Let dð�; �Þ ¼ C1ð�; �Þ þ C1ð�; �Þ is a quasi-

distance, where C1 is a conditional entropy, H and M are

its corresponding partition entropy and the measure

function, respectively. Also, let gðxÞ ¼ x � Mð1x ; . . . ; 1
xÞ. If

g00ðxÞ � 0, d1ð�0; �Þ¼maxfd1ð�0; �Þ j �0 ¼ fA01; . . . ; A0mg 2
PART ðAÞ; jA0i

T
Bjj � 1; 1 � i � m; 1 � j � n;m 2 INg.

Proof. The proof can be reduced to the following claim: for

such a �0 2 PART ðAÞ, if jA0i1 j � jA
0
i2
j and jA0i1

T
Bjj ¼ 1,

jA0i2
T
Bjj ¼ 0, for some i1, i2, j, then after moving the

unique element of A0i1
T
Bj into A0i2 , the quasi-distance

d1ð�0; �Þmay increase. This fact is shown in the following

two matrixes. The distance of the matrix on the right is

not smaller than that on the left:

..

. ..
. ..

. ..
. ..

.

1 1 1 0 1

1 0 0 1 1

..

. ..
. ..

. ..
. ..

.

)

..

. ..
. ..

. ..
. ..

.

1 1 1 1 1

1 0 0 0 1

..

. ..
. ..

. ..
. ..

.
:

The proof of the above claim, with the aid of Mean-value
theorem (see [21, p. 86]), is straightforward. Note that the
difference between the two quasi-distances (before and
after the moving) by �. Then,

� ¼
g A0i2
		 		þ 1
� �

� g A0i2
		 		� �h i

� g A0i1
		 		� �

� g A0i1
		 		� 1
� �h i

jAj :

Using the Mean-value theorem, there exist

�1 2 ðjA0i1 j � 1; jA0i1 jÞ, �2 2 ðjA0i2 j; jA
0
i2
j þ 1Þ, satisfying

g A0i1
		 		� �

� g A0i1
		 		� 1
� �

¼ g0ð�1Þ; g A0i2
		 		þ 1
� �

� g A0i2
		 		� �

¼ g0ð�2Þ:

So, � ¼ g0ð�2Þ�g0ð�1Þ
jAj . Since g00ðxÞ � 0, g0ðxÞ is a nondecreas-

ing function. Therefore, � � 0, and the quasi-distance

may increase after the above adjustment. tu
We can further check that the partition entropies in Table 1
satisfy the conditions in Theorem 6, as shown in Table 3

which lists these entropies with the corresponding g00ðxÞ.
Thus, this theorem holds for all the quasi-distances in Table 1.

Nevertheless, there is an appreciable difference between

dmax� and d1ð�0; �Þ. Here, we provide an example to show this.

In this example, the Shannon Entropy is used in the quasi-

distance measure and we use the notations in the formula-

tion of �0. Specifically, we assume that n ¼ 17, jBjj ¼ N if

1 � j � 16, and jB17j ¼ 2 �N , whereN is an arbitrary positive

integer. The left matrix in the diagram below corresponds to

�0. Next, we define a new partition of A, �0 ¼ fA01; . . . ; A0Ng,
where A0i ¼ fa1

i ; a
2
i ; . . . ; a15

i ; a
16
i ; a

17
2i�1; a

17
2i g, 1 � i � N . The

corresponding intersection matrix is illustrated by the right

matrix below:

N

1 1 � � � 1 1
1 1 � � � 1 1
..
. ..

. ..
. ..

. ..
.

1 1 � � � 1 1

8>><>>:

N

0 0 � � � 0 1
0 0 � � � 0 1
..
. ..

. ..
. ..

. ..
.

0 0 � � � 0 1

8>><>>:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
17

N

1 1 � � � 1 2
1 1 � � � 1 2
..
. ..

. ..
. ..

. ..
.

1 1 � � � 1 2:

8>><>>:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
17

Then, we can easily verify that d1ð�0; �Þ � d1ð�0; �Þ ¼
log2 17� log2 16, which is independent of the size of N . This

example shows that in the general cases it is really hard to

obtain the exact value of dmax� .

6.3 Computation of dð�0; �Þ
In this section, we give the explicit expression of
dð�0; �Þ, which is useful in the approximation of dmax� .
Let jBjj ¼ bj ðj ¼ 1; . . . ; nÞ and

Pn
j¼1 bj ¼ b. The quasi-

distance between �0 and � can be expressed as

dð�0; �Þ ¼ C1ð�0; �Þ þ C1ð�; �0Þ:

It is clear that C1ð�; �0Þ ¼
Pn

j¼1
bjGðbjÞ
b , where GðbjÞ ¼

Hð1
bj
; . . . ; 1

bj
Þ (for example, when H is the Shannon entropy,

GðbjÞ ¼ log2 bj). However, it will take much efforts to

express C1ð�0; �Þ analytically.

To this end, we specify all the change points bj1 ; . . . ; bjk in

the sequence b0 � b1 � � � � � bn (b0 is set to 0 for conve-

nience) such that bðjl�1Þ < bjl ðl ¼ 1; . . . ; kÞ. Then, the other

conditional entropy is

C1ð�0; �Þ ¼
Pk

l¼1 bjl � bðjl�1Þ

 �

ðnþ j1 � jlÞGðnþ j1 � jlÞ
b

:
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TABLE 3
The Partition Entropies with the Corresponding g00ðxÞ Defined in

Theorem 6 ðx > 0Þ
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Altogether, dð�0; �Þ can be expressed as

dð�0; �Þ ¼
Pk

l¼1 bjl � bðjl�1Þ

 �

ðnþ j1 � jlÞGðnþ j1 � jlÞ
b

þ
Pn

j¼1 bjGðbjÞ
b

:

To further clarify the computation of C1ð�0; �Þ, we give

the following example. The 5 	 7 intersection matrix below

is induced by two partitions �0 and �:

5

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 0 1 1

8>><>>:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
7

:

In this example, the sequence of ðb0; b1; . . . ; b7Þ is (0, 3, 3,

3, 4, 4, 5, 5), b ¼ 27, n ¼ 7, the sequence of the change points

is ðb1; b4; b6Þ, and the index sequence ðj1; j2; j3Þ of the change

points is (1, 4, 6). Then, in this example

C1ð�0; �Þ ¼
ðb1 � b0Þðnþ j1 � j1ÞGðnþ j1 � j1Þ

b

þ ðb4 � b3Þðnþ j1 � j2ÞGðnþ j1 � j2Þ
b

þ ðb6 � b5Þðnþ j1 � j3ÞGðnþ j1 � j3Þ
b

¼ 3 � 7 � Gð7Þ þ 1 � 4 � Gð4Þ þ 1 � 2 � Gð2Þ
27

:

6.4 Approximation of dmax� in the General Cases

In general, it is still unknown when dmax� ¼ d1ð�; �Þ
happens. However, the mathematic facts listed above

inspire us that dmax� has its approximation range, as shown

in the following inequality:

dmax� � dmax� � dmax� ; ð22Þ

where dmax� ¼C1ð�0; �ÞþC1ð�; �0Þ and dmax� ¼Hð�ÞþC1ð�; �0Þ.
They are the tight lower and upper bound of dmax� ,

respectively.
This approximation range is reasonable because the

following two inequalities always holds:

0 � dmax� � dmax� � Hð�Þ; ð23Þ
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Some Characteristics of Experimental Data Sets

TABLE 5
Experimental Results for Real-World Data Sets
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0 � dmax� � dmax� � Hð�Þ: ð24Þ

Inequalities (23) and (24) show that the difference
between dmax� and its upper (lower) bound is smaller
than Hð�Þ. When jAj is very large (this is a popular
assumption for practical clustering problems), C1ð�; �0Þ is
much larger than Hð�Þ. Thus, the above upper and lower
bounds for dmax� are effectively estimated. In practice, dmax�

might be approximated by the medium value of the
upper and lower bounds

ddmax� ¼
dmax� þ dmax�

� �
2

¼
C1ð�0; �Þ þ C1ð�; �0Þ

 �

þ Hð�Þ þ C1ð�; �0Þ

 �

2
:

ð25Þ

Note that if dmax� ðdmax� Þ is substituted for the dmax� in (21),

the result corresponds to the upper (lower) bounds of the

normalized distance.

6.5 Exact Computation of dmax� in the Special Cases

In this section, we show the special cases where the exact

value of dmax� can be obtained. First, we consider the case

when the cluster sizes of the “true” clusters are all equal.

Theorem 7. When the cluster sizes of the “true” clustering � are

all equal, dmax� ¼ dmax� ¼ dmax� .

Proof. In this case, one can easily verify that C1ð�0; �Þ¼Hð�Þ.
By Inequality (22), dmax� ¼ dmax� ¼ dmax� holds directly. tu

Next, we analyze the exact computation of dmax� when

d1
goo in Table 1 is adopted.

Theorem 8. For the distance d1
goo, d

max
� ¼ dmax� ¼ dmax� .

Proof. In this case thatHgoo is used in the distance computa-

tion, one can easily verify that C1
gooð�0; �Þ ¼ Hgooð�Þ. By

Inequality (22), dmax� ¼ dmax� ¼ dmax� holds directly. tu

7 EXPERIMENTAL RESULTS

In this section, we present experimental results to illustrate

the effectiveness of distance normalization when we use the

distance measures in Table 1 for comparing clusterings of

different data sets.

7.1 The Experimental Setup

Experimental tool. Since we aim to compare different

clustering validation measures (not the performance of

different clustering algorithms), the most popular clustering

algorithm K-means is adopted. In our experiments, we used

the CLUTO [13] implementation of K-means.
Experimental data sets. For our experiments, we used a

number of real-world data sets that were obtained from

different application domains. Some characteristics of these

data sets are shown in Table 4. In the table, “# of classes”

indicates the number of “true” clustering. Please refer to

[26] for more details of these data sets.
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Fig. 2. DCV versus d1
sha and normd1

sha. (a) DCV versus d1
sha. (b) DCV versus normd1

sha.
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7.2 Evaluation Metric

We first introduce the Coefficient of Variation (CV) [6],
which is a measure of dispersion of a data distribution. CV
is defined as the ratio of the standard deviation to the mean.
The larger the CV value is, the greater the variability is in
the data. Given a set of data objects X ¼ fx1; x2; . . . ; xng, we
have CV ¼ s

�x , where

�x ¼
Pn

i¼1 xi
n

and s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðxi��xÞ2

n�1

r
.

Next, we define CV0 as the CV value on the cluster sizes
of the “true” clusters and CV1 as the CV value on the cluster
sizes of the clustering results. Also, DCV ¼ CV0 � CV1

is the change of CV values before and after clustering.
Xiong et al. [26] has shown that DCV can be used to
describe how different between the “true” cluster distribu-
tion and the distribution of cluster results. DCV owns the
property that can be used to indicate bad clusterings when
the DCV values are large. In fact, a large DCV value
indicates that a clustering result is away from the true
cluster distribution. Thus, a good quasi-distance must have
large values if the DCV values are large. Therefore, we
evaluate the proposed quasi-distances by checking whether
any clustering results with larger DCV values will lead to
larger quasi-distances. However, we agree that DCV is a
necessary but not sufficient condition for the clustering
quality. In other words, a large DCV value indicates a bad
clustering result, but a small DCV value may not indicate a

good clustering result. This is also the reason that we
introduce the quasi-distance.

7.3 The Effect of Distance Normalization

In our experiments, we first applied K-means for clustering
the input data sets and the number of clusters k was set as
the “true” cluster number for the purpose of comparison.
Then, we computed the following values:

. The values of the four distances d1
sha, d

1
pal, d

1
gin, d1

goo (as
shown Table 1) between the “true” clustering and
the clustering results, respectively.

. The values of the four normalized distances
normd1

sha, normd
1
pal, normd

1
gin, normd1

goo, respectively.

Note that the normalized distances normd1
sha, normd

1
pal,

normd1
gin are approximated using the approximate compu-

tation of dmax� in (25). The exact value of normd1
goo is

obtained by Theorem 8. Table 5 presents a summary of the
experimental results on various real-world data sets.

Also, Figs. 2, 3, 4, and 5 show the DCV values and the
corresponding (normalized) distance values of the four
distance measures on all the experimental data sets. For the
normalized distance on each data set, the range bar shows the
upper and lower bounds of the normalized distance, which
are computed using dmax� and dmax� in (24) and (23),
respectively. As can be seen in each subfigure, there is a
linear regression fitting line for all the points. The value of
R Square ðR2Þ is also shown in the figure. The R2 value
provides a guide to the “goodness-of-fit” of linear regression.
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Fig. 3. DCV versus d1
pal and normd1

pal. (a) DCV versus d1
pal. (b) DCV versus normd1

pal.
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In these figures, we can also observe that the R2 values of
the normalized distances are always larger than those of the
original distance, and the R2 value of normdsha is the largest
among all observed distance measures. In other words, our
experimental results indicate that the normalized distance
performs better than the original distance when comparing
clustering of different data sets. Also, the normalized
distance normdsha performs the best among four distance
measures in Table 1.

7.4 The Range of Performance of the Normalized
Distance Measures

As can be seen in Figs. 2, 3, 4, and 5, we also use the range
bar to indicate the range of performance of the normalized
distance measures. The shorter the range bar is, the more
precise the approximate normalized distance is to its true
value. In the following, we show that the length of the range
bar is closely related to the CV0 value of the data set.

Figs. 6, 7, and 8 show the CV0 values and the lengths of
ranges of the three normalized distances: normd1

sha,
normd1

pal, normd
1
gin

3 on all the data sets. In these figures,
we can observe that the length of the range bar increases as
the increase of CV0. This indicates that the approximate
computation of these three normalized distances performs
better when CV0 is smaller. This result agrees with

Theorem 7, which states that the exact normalized distance

can be obtained when CV0 ¼ 0.4

8 CONCLUSIONS

In this paper, we first proposed a uniform representation of

quasi-distance, which possesses three properties: symmetry,

the triangle law, and the minimum reachable. Several well-

known information-theoretic distance measures such as

Shannon Distance, Pal Distance, the Van Dongen criterion,

and the Mirkin metric can be described by this generalized

representation. Also, three properties of the quasi-distance

naturally lend itself as the external measure for clustering

validation. Furthermore, we highlighted the importance of

normalization when applying distance measures to compare

the clustering results of different data sets. Along this line,

we provided a theoretic analysis of the computation form of

the maximum value of a distance measure. This is important

for the normalization process. Finally, in order to compare

the clustering performances of an algorithm on different

data sets, we applied the K-means clustering algorithm to

empirically show that 1) the normalized distance measures

outperform the original distance measure and 2) the

normalized Shannon distance has the best performance

among four observed distance measures.
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3. Since the exact value of normd1
goo is obtained by Theorem 8, the length

of its range bar is always 0. Thus, the corresponding range bar for normd1
goo

is omitted. 4. When CV0 ¼ 0, the cluster sizes of the “true” clustering are all equal.

Fig. 4. DCV versus d1
gin and normd1

gin. (a) DCV versus d1
gin. (b) DCV versus normd1

gin.
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